To make head and tail of this drawing of the RMS Queen Mary circa 1935, I recommend that you first acquaint yourself with the HULL. Note that she has two W/T offices, one aft unmanned, containing the ships transmitters [1 LF, 1 MF and 2 HF one deck down from the upper deck, and one forward, several decks down which is manned by up to four radio officers, containing all the ships receivers and the control system for changing frequencies and power outputs in the transmitter room. They are connected to their dedicated aerials via trunkings, which are metal prefabrications, in the case of the transmitters individual trunkings for each transmitter, eight foot long from RF output to deck insulator each of 18 sq". The receiver aerials are harvested and fed down a twenty five foot deep trunking 3' x 1' from deck insulators to aerial COS [change over switch] in the manned office. Trunkings were used by mercantile ships and naval ships, and for the former they were always functional. For naval ships, that functionality was marred by the deck armour having to be breached, often in a capital ships by a trunking hole 3' square and more than one. Ships like the Hood would have taken a vast amount of water into her hull through trunking's, exacerbating the speed of her sinking!

Now let's look above the hull to the masts, funnels and aerial rigs. Use your zooming tool as convenient. Starting aft, you will see that each of the four transmitters is connected to a unique aerial, involving the main mast, the foremast, the after funnel and the wire connected to them. Transmitter one is connected to the MF part of the main roof running between the two high masts; transmitter two to the LF section of the main roof; transmitter three to HF aerial 1 [the directional aerial - more on that in a minute]; and transmitter 4 to HF 2 aerial which terminates either side of the after funnel and not as shown in the drawing. In both cases the masts are isolated electrically from the ships infrastructure, for'ard on a fixed spur set at right angles to the tip of the mast, and aft from a 'swinging spur' connected as HF aerial 1 to the sausage - type of construction and to the base of the ensign mast via insulated anchor wires. The writing above the main roof reads "400 foot long main roof most of which is for communication with Rugby, with the small after part used for MF working". Now to HF 1 aerial, the directional aerial when steering on a east-west [and reciprocal course] whilst crossing the Atlantic. Note there are two sets of arrows, the small set pointing to the sausage and the wires aft of the main mast, and the large set leads us to the text upper left which says "This down leg to the stern of the ship and the fat sausage broad aerial supported by the main mast is the inverted 'V' aerial which is directional London [and Southampton of course] - New York when crossing the Atlantic." It is easy to see why they coined the expression inverted 'V'. The small black dots on the drawing represent the insulation points, either to divide a stretch of wire into individual wire aerials or for keeping the wire aerials from coming into contact with metal objects on the ship which would create a direct route to earth.

Now continuing forward we come to the area between the fore-funnel and the middle funnel. The mini main roof stretched between these two funnels is a rigging nightmare but a clever piece of aerial technology. If you now look to the bottom of the drawing beneath the hull, you will see the lettered frequency covered by each of receiving aerials A to G. Dealing first with aerials D to A. These are stand alone wire aerials, their job shown in the table I have just referred to. Note how long 'G' is - it starts on the after funnel used for very low LF frequencies, and that D and E are one of the same whilst F is this vast ships emergency aerial should all other fail! However, the clever aerials are A, B and C and because of their construction and application they are broad band aerials well capable to use the directionality of the shore aerial for reception.
Note how they are all connected to the mini main reception roof strung between the front two funnels. If you look at the centre aerial A you will see that it is connected at two points only, and two we know to be 'di' meaning that A is a dipole aerial affording a massively increased sensitivity delivering an enhanced signal to noise ration [S/N] allowing a massive increase in sensitivity. Note how the [glass] insulators split the mini roof into three separate aerials each transformer coupled in the appropriate deck insulator to give three unique frequency ranges.

The Queens cleared [and received] on some days in the low hundreds of telegrams to and from shore as well as offering a telephone service to shore exchanges befitting the best terra firma smart London or New York hotels. These types of passengers didn't use being at sea as an excuse to put daily life on hold, and their habits of gambling, betting and share dealing would have continued apace, even increased with all that free time to hand. Having that inverted 'V' highly directional aerial was a godsend when many vessels struggles with adverse ionospheric conditions which made short wave communicating very difficult at times as I know well from my experiences at sea over a lengthy period.